PI3-kinase activation is critical for host barrier permissiveness to Listeria monocytogenes
نویسندگان
چکیده
Invasion of nonphagocytic cells, a critical property of Listeria monocytogenes (Lm) that enables it to cross host barriers, is mediated by the interaction of two bacterial surface proteins, InlA and InlB, with their respective receptors E-cadherin and c-Met. Although InlA-E-cadherin interaction is necessary and sufficient for Lm crossing of the intestinal barrier, both InlA and InlB are required for Lm crossing of the placental barrier. The mechanisms underlying these differences are unknown. Phosphoinositide 3-kinase (PI3-K) is involved in both InlA- and InlB-dependent pathways. Indeed, InlA-dependent entry requires PI3-K activity but does not activate it, whereas InlB-c-Met interaction activates PI3-K. We show that Lm intestinal target cells exhibit a constitutive PI3-K activity, rendering InlB dispensable for InlA-dependent Lm intestinal barrier crossing. In contrast, the placental barrier does not exhibit constitutive PI3-K activity, making InlB necessary for InlA-dependent Lm placental invasion. Here, we provide the molecular explanation for the respective contributions of InlA and InlB to Lm host barrier invasion, and reveal the critical role of InlB in rendering cells permissive to InlA-mediated invasion. This study shows that PI3-K activity is critical to host barrier permissiveness to microbes, and that pathogens exploit both similarities and differences of host barriers to disseminate.
منابع مشابه
Cdc42 and phosphoinositide 3-kinase drive Rac-mediated actin polymerization downstream of c-Met in distinct and common pathways.
Activation of c-Met, the hepatocyte growth factor (HGF)/scatter factor receptor induces reorganization of the actin cytoskeleton, which drives epithelial cell scattering and motility and is exploited by pathogenic Listeria monocytogenes to invade nonepithelial cells. However, the precise contributions of distinct Rho-GTPases, the phosphatidylinositol 3-kinases, and actin assembly regulators to ...
متن کاملListeria monocytogenes invasion of epithelial cells requires the MEK-1/ERK-2 mitogen-activated protein kinase pathway.
PD98059, a specific inhibitor of MEK-1 mitogen-activated protein (MAP) kinase kinase, blocked Listeria monocytogenes invasion into HeLa epithelial cells. The effects of PD98059 were reversible, as adherent extracellular bacteria were internalized upon removal of the drug. Previously, we reported that L. monocytogenes could activate ERK-1 and ERK-2 MAP kinases through the action of listeriolysin...
متن کاملRegional IFNgamma expression is insufficient for efficacious control of food-borne bacterial pathogens at the gut epithelial barrier.
IFNgamma is critical for host defence against various food-borne pathogens including Salmonella enterica and Listeria monocytogenes, the causative agents of salmonellosis and listeriosis, respectively. We investigated the impact of regional IFNgamma expression at the intestinal epithelial barrier on host invasion by salmonellae and listeriae following oral challenge. Transgenic mice (IFNgamma-g...
متن کاملConstitutive Activation of PrfA Tilts the Balance of Listeria monocytogenes Fitness Towards Life within the Host versus Environmental Survival
PrfA is a key regulator of Listeria monocytogenes pathogenesis and induces the expression of multiple virulence factors within the infected host. PrfA is post-translationally regulated such that the protein becomes activated upon bacterial entry into the cell cytosol. The signal that triggers PrfA activation remains unknown, however mutations have been identified (prfA* mutations) that lock the...
متن کاملFormylpeptide receptors are critical for rapid neutrophil mobilization in host defense against Listeria monocytogenes
Listeria monocytogenes (Listeria) causes opportunistic infection in immunocompromised hosts with high mortality. Resistance to Listeria depends on immune responses and recruitment of neutrophils of the immune system into infected sites is an early and critical step. Mouse neutrophils express two G protein-coupled formylpeptide receptor subtypes Fpr1 and Fpr2 that recognize bacterial and host-de...
متن کامل